
 

 

 

Translation of and commentary on George H. Pólya's (1930) "Eine 

Wahrscheinlichkeitsaufgabe in der Pflanzensoziologie" 

 

 

 

 

 

by 

 

Alexander M. Kerr 

 

 

 

 

 

University of Guam Marine Laboratory Technical Report 172 

February 2025 

 

 



 ii 



 iii 

ACKNOWLEDGEMENTS 

 

I have benefitted from discussion with my former students Christian (Keiki) Potter 

(Doctor of Medicine Program, University of Queensland) and Jordan Gault (Ph.D. 

Program, Institut für Chemie und Biologie des Meeres, Universität Oldenburg). 

   

Dankulu na Saina Ma'åse! 



 iv 



 v 

SUMMARY 

 

This report provides an English translation of a paper by George Pólya that is often 

cited in the literature on biogeography, yet is apparently seldom read in its original 

language. It concerns how higher taxa are expected to be distributed at random in 

ecological communities given their species richnesses and that of a joint regional pool. 

Pólya arrived at an analytical solution of the expected value by considering the problem 

as the number of colours of balls drawn on average in a multivariate hypergeometric 

ball-and-urn experiment. 
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INTRODUCTION 

What follows is an English translation of George Pólya's (1930) paper in German on his 

mathematical investigation of a problem in plant biogeography and community ecology. 

It was undertaken as part of a project to calculate the likelihood function of observed 

genus-species ratios under a multivariate hypergeometric expectation. 

George H. Pólya (1897–1985) was a Hungarian mathematician who taught and 

did research in Switzerland and the USA. He is considered one of the most influential 

mathematicians of the 20th century. He had broad interests and made fundamental 

contributions to numerous fields, including those relevant here, such as combinatorics 

and probability theory. Beginning early in his career, Pólya also wrote important works 

on mathematical education and problem solving in general for use by students and 

teachers. Among the many heuristics that he developed was the now classic Pólya urn 

problem, a model in which collections of objects to be considered statistically were 

represented as coloured balls in an urn or sack. Draws from the urn are repeated in 

such a way as to mimic the random sampling process being modelled. This is the case 

with the problem in the translated paper below.  

In mid-February of 1930, Pólya submitted a paper to Vierteljahrsschrift der 

Naturforschenden Gesellschaft in Zürich, a quarterly journal of research in the natural 

sciences, still in publication today, the fifth of eight papers he would publish in that 

journal. As well, it was one of six papers he would publish that year, including one co-

authored with the, at the time, perhaps better-known number-theorist duo from 

Cambridge, G. H. Hardy and J. E. Littlewood (see bibliography in Chung et al. 1987). 

The submission was written to develop analytically an emerging idea being contested in 

the field of biogeography by his contemporaries, primarily the botanists P. Jaccard 

(1928) and A. Maillefer (1929). Pólya (1930) first reviewed how genus-species ratios in 

a local region (his "sub-area") are probabilistically drawn from a pool of potential 

species in a larger region (his "basic" or "basal" area). He modelled this problem 

conceptually and then mathematically as the expected number of colours of balls drawn 

without replacement from an urn of balls of several colours. How local communities of 

organisms are assembled taxonomically from a regional pool of species is still of 
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interest today (Enquist 2002; Gotelli 2002; Fan et al. 2017; Potter 2019). A review of the 

history of the study of taxonomic ratios is found in Gotelli (2004). 

 

TRANSLATION 

 The original article was obtained as a pdf from the journal's website 

https://www.ngzh.ch/publikationen/vjs/75/3-4 [Accessed 15 May 2019]. The article will 

enter the public domain in the USA on 1 January 2026; see Hirtle (2023). I make the 

translation available now with the understanding that it falls under fair use, for nonprofit 

educational and research purposes, that it is a factual work (contra an artistic one), and 

that the use has no market effect (the original is freely available on the web). I do not 

speak German, so I relied heavily on online translators and dictionaries, especially 

dict.leo.org, which is awesome. I've been unsuccessful in having the final version 

completely checked by native speakers. Hence, any errors remain my own. 

I used Times New Roman to mimic the original serif typeface. The reduction in 

font size to indicate the short proof on page 216 is likewise preserved. Cited authors are 

left as in the original, in small caps. Citations are left in the original language, either 

German, French, or English. Original page numbers and my comments are in Arial 

typeface in square brackets. Original page numbers are placed at the approximate point 

in the translated text where the page begins. The original footnotes are placed on the 

page of the translation in which the in-text superscripts occur. Equations and tables 

retain their original organisation and are left in their original position relative to the text, 

in the latter case, centred and at the end of the paper. Parenthetical comments and 

those in quotes are the original author's. The single lapsus, a typesetting error or 

perhaps loss of resolution in imaging, was left uncorrected, but noted in the translation: 

in Eq. 9 the left-hand term "𝑔𝑠" should have been rendered as the expected value, as 

elsewhere, 𝑔̅𝑠. 

 

DISCUSSION 

Pólya (1930) was more straightforward to translate than anticipated. Because of 

the paper's author, a giant of 20th-century mathematics, its unfamiliar topic, probability 
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theory, and its publication nearly a century ago, I was initially worried that the text would 

correspondingly be an alien landscape of discipline- and era-specific terms. I had 

previously encountered a similar issue in translating a portion of a German-language 

book, Hubert von Ludwig's (1888–1892) Die Seewalzen (see Kerr 2013). Hence, I was 

relieved to find that Prof. Pólya's writing was a model of clarity. Recent developments in 

online translation also likely played a role in the ease of translation. Still, one wonders if 

his lucid style was due in large measure to his strong interests in mathematical teaching 

and the importance he lay in conveying to students a compelling conceptual model of 

statistical problems. If so, then perhaps this also explains his avoidance of specialist 

terminology and giant leaps in the derivations. In fact, he was later to say, 

If the proof starts from axioms, distinguishes several cases, and takes 

thirteen lines in the text book ... it may give the youngsters the impression 

that mathematics consists in proving the most obvious things in the least 

obvious way. (Pólya 1968: 129) 

He would go on to finish two volumes on the pedagogy of problem solving and yes: 

amusingly, which is to say with charm and affection, employ the word 'youngsters' 

throughout. 

 

A second proof 

 Although invariably provided without a source (see e.g., www.brainyquote.com), 

he is also often quoted as having said, 'it is better to solve one problem in five ways...'. 

In that spirit, then, I offer another solution to the main problem in the translated paper. 

Pólya (1930) obtained the expected value, the mean, of the distribution of the number of 

colours drawn hypergeometrically from an urn (as the number of genera of species 

occurring in a local area). Here, he made use of the probability generating function and 

then took its first derivative, a standard method for obtaining the moments of a 

probability distribution. There is a simpler method, however, involving the sums of 

random indicator variables, whose asymptotic theory was to be developed later (e.g., 

Volkova 1996) and so, perhaps, was not available or did not occur to him at the time. 

Alternatively, perhaps he felt that his derivation was the more fundamental or fruitful 

approach. 
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 Briefly, using the method of 'random indicators' outlined by numerous authors, 

e.g., succinctly by Nicolas (2015), we can find the average number of colours of balls 

E(m) of multivariate hypergeometric draws of n balls from an urn of N balls with Ni balls 

of i = 1 to M colours. First, let Ii = 1 when the i-th colour is drawn at least once and Ii = 0 

otherwise. Then, the number of colours drawn is 𝑚 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑀 and through a 

rule called the 'linearity of expectation', which states that the expected value of a sum of 

random variables is the sum of their individual expected values, 

𝐸(𝑚) = 𝐸(𝐼1) + 𝐸(𝐼2) + ⋯ + 𝐸(𝐼𝑀). 

Since each Ii are independent, albeit non-identically distributed outcomes of a Bernoulli 

trial, their expected value is just 𝐸(𝐼𝑖)  =  𝑃𝑟(𝐼𝑖 =  1), which happens to be quicker to 

calculate as its one complement or 

𝐸(𝐼𝑖)  =  𝑃𝑟(𝐼𝑖 =  1) 

=  1 − 𝑃𝑟(𝐼𝑖 = 0) 

= 1 −
(

𝑁 − 𝑁𝑖

𝑛
)

(
𝑁
𝑛

)
. 

Now, summing over all M of these expectations, we get 

𝐸(𝑚) = 𝑀 − ∑
(

𝑁 − 𝑁𝑖

𝑛
)

(
𝑁
𝑛

)

𝑀

𝑖=1

. (1) 

This, reassuringly, is the same as Pólya's (1930) result (his Eq. 6) from deriving and 

differentiating the probability generating function. □ 

 

Alexander M. Kerr 

alexander.kerr@aya.yale.edu 

Marine Laboratory 

University of Guam 

21 February 2025 
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A Probabilistic Problem in Phytosociology 

by 

G. PÓLYA (Zürich) 

_________ 

(Manuscript received on June 14, 1930.) 

_________ 

 1. Background to the problem. In his basic statistical floristic investigations, P. 

JACCARD introduced the concept1 of generic coefficients ("coefficient générique"): In an area 

there exists a total of s species comprised of g genera, wherein JACCARD defined 100g/s as the 

generic coefficient of the area concerned. 

 In a recent interesting communication,2 A. MAILLEFER has taken a very noteworthy 

approach to precompute the generic coefficient probabilistically. The MAILLEFER approach is, it 

seems to me, most understandable if one sets the task as follows: 

 It is well known how many species are present in a larger basic area and how these 

species are distributed among the genera represented; It is also known how many species are 

present in a subarea of the basic area. What is required, based on these data, is to calculate (at 

least approximately) the number of genera in said subarea. 

 Let's introduce terms. Let  

  S  be the number of species in the basal area, 

  G  is the number of genera in the basal area, 

  s  is the number of species in the sub-area, 

  g  is the number of genera in the sub-area. 

[p. 212] 

 g is thus unknown and sought, whereas S, G, s are known, and it is known how many of 

the G genera are represented by only one species in the basic area, how many by two, how many 

by three species, etc. 

 Of course, if the s species of the sub-area were chosen among the S species of the basal 

area "on purpose" (for example, by an enemy of mathematical methods), then a prediction of g 

would be futile, but the species of the subspecies has been chosen by nature, and it seems to me 

that the following working hypothesis can not be discarded a priori: nature has randomly selected 

the species of the sub-area, as far as the division into genera is concerned, so we pre-specify the 

given task as follows: determine the probable or average number of genera under the assumption 

that the species of the sub-area have been selected among those of the basic area "by chance". 

 We can make a random selection ourselves as follows: we represent each species by a 

ball, we throw the balls together in an "urn" (in a sack or such) and draw the required number 

blindly. We want the balls, which represent species of the same genus, and provided with the 

 
1 See the summary P. JACCARD, Die statistisch-floristische Methode als Grundlage der Pflanzensoziologie; 

Abderhalden's Handbuch der biolog Arbeitsmethoden, Abt. XI, Teil 5, p. 165-202. 
2 Le coefficient générique de P. JACCARD et sa signification, Mém. de la Soc. Vaudoise des Sciences Naturelles, 

vol. 3 (1929) p. 113-183. 



9 

 

same color, and distinguish the different genera by different colors. There are thus S spheres that 

carry G different colors. When we draw blindly from these spheres s, we find more some times, 

and at other times we find fewer different colors on the drawn balls, and if we repeat this 

experiment with the balls enough times, we can find the average number of different colors on s 

blindly-drawn balls, which, if our working hypothesis is correct, also may be considered as the 

average number of genera in subregions with s species. That is why we call, with MAILLEFER, 

this average number determined by urn experiments the probable genus number for s species; we 

denote this probable genus number by g, or more specifically to emphasize the dependence on 

the species number s, with 𝑔̅𝑠. This number, which we transmit not only by urn experiments, as 

we shall see later, but also by probability calculus, seems to me to be a not unreasonable solution 

to the problem given above. [p. 213] 

 MAILLEFER adopted Switzerland as the basic area and determined the expected genus 

number 𝑔̅𝑠 for several species numbers through urn experiments. (He did not experiment with 

colored balls, but with written notes, which, evidently came to the same conclusion.) MAILLEFER 

has compared the expected genus numbers determined by urn experiments with numerous real 

numbers obtained by floristic-statistical observations, both in parts of Switzerland, as in areas 

outside of Switzerland. Without being able to claim a competence which does not concern me in 

botanical questions, may I say that, in this respect, on the basis of the material summarized by 

MAILLEFER the agreement seems to me to be quite a good one, so that the real genus numbers 

should be regarded as having been explained by the expected genus numbers, at least for the 

most part. 

 In the following I want to solve the still outstanding mathematical task, whose solution 

MAILLEFER has also called desirable3: Calculate the probabilistic numbers 𝑔̅𝑠 determined by 

probability experiments. 

 I want to give the exact solution to the mathematical problem in Section 2 and derive 

from it in Section 3 an approximate formula that is well-suited for smaller values of s. Finally, in 

Section 4, I compile some numerical data. 

 It would be possible to pursue the solution in different directions, but I have refrained 

from doing so, in particular because, as a non-botanist, I can not judge whether the delimitation 

of species and genera possesses the degree of firmness which is generally desirable in the 

delineation of features in statistical studies. 

 

 2. Solution to the probabilistic problem. So we have been led to the following task: An 

urn contains S balls that carry G different colors. Let k1 be balls of the first, k2; from the second, 

.. kG of the last G-th color present, so that 

(1) 

𝑘1 + 𝑘2 + 𝑘3 + ⋯ + 𝑘𝐺 = 𝑆 

[p. 214] 

 
3 Op. cit., p. 119. I will, in complete agreement with MAILLEFER, understand the task in the way he calls "manière 

b)". 
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We are looking for the mean number or mathematical expectation g of the different colors that 

appear on the balls taken from the urn at the same time. 

 Let us first look for the probability that exactly g colors appear on the balls taken from 

the urn. The number of possible cases is obviously (
𝑆
𝑠

). The number of favorable cases, we call 

them Asg is the sum of all products 

(
𝑘1

𝑟1
) (

𝑘2

𝑟2
) … (

𝑘𝐺

𝑟𝐺
) = 𝑆 

of the kind that 

𝑟1 + 𝑟2 + ⋯ + 𝑟𝐺 = 𝑠 

0 ≤ 𝑟1 ≤ 𝑘1, 0 ≤ 𝑟2 ≤ 𝑘2, … ,0 ≤ 𝑟𝐺 ≤ 𝑘𝐺 

and among the numbers r1, r2, ..., rG exactly g are different from 0. We get Asg most conveniently 

as coefficients in a generating function: 

(2) 

𝑓(𝑥, 𝑦) = ∏ {1 + (
𝑘𝑣

1
) 𝑥𝑦 + (

𝑘𝑣

2
) 𝑥2𝑦 + ⋯ + (

𝑘𝑣

𝑘𝑣
) 𝑥𝑘𝑣𝑦}

𝐺

𝑣=1

 

= ∏{1 + [(1 + 𝑥)𝑘𝑣 − 1]𝑦}

𝐺

𝑣=1

 

= ∑ ∑ 𝐴𝑠𝑔𝑥𝑠𝑦𝑔

𝑔𝑠

 

 The desired probability is the quotient 𝐴𝑠𝑔 (
𝑆
𝑠

)⁄  and the desired average number of colors 

is 

(3) 

𝑔̅𝑠 = (
𝑆
𝑠

)
−1

∑ 𝑔𝐴𝑠𝑔

𝑔

. 

 According to (2), we have, 

𝜕𝑓

𝜕𝑦
= ∑ ∑ 𝐴𝑠𝑔𝑥𝑠𝑦𝑔−1

𝑔𝑠

 

and therefore, according to (3), 

(4) 

(
𝜕𝑓

𝜕𝑦
)

𝑦=1

= ∑ ∑ 𝐴𝑠𝑔𝑥𝑠

𝑔𝑠

= ∑ (
𝑆
𝑠

) 𝑔̅𝑠𝑥𝑠

𝑔

. 

Starting from (2), we can calculate the function (4) differently: 

𝜕𝑓

𝜕𝑦
= 𝑓

𝜕 log 𝑓

𝜕𝑦
= 𝑓(𝑥, 𝑦) ∑

(1 + 𝑥)𝑘𝑣 − 1

1 + [(1 + 𝑥)𝑘𝑣 − 1]𝑦

𝐺

𝑣=1

, 

[p. 215] 

(5) 
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(
𝜕𝑓

𝜕𝑦
)

𝑦=1

= 𝑓(𝑥, 1) ∑
(1 + 𝑥)𝑘𝑣 − 1

(1 + 𝑥)𝑘𝑣

𝐺

𝑣=1

 

= (1 + 𝑥)𝑆 ∑[1 − (1 + 𝑥)−𝑘𝑣]

𝐺

𝑣=1

 

= 𝐺(1 + 𝑥)𝑆 − ∑(1 + 𝑥)−𝑘𝑣

𝐺

𝑣=1

; 

To determine f (x, 1), we used (1). The comparison of the coefficient of xs in (4) and (5) gives the 

desired average number: 

(6) 

𝑔̅𝑠 = 𝐺 − ∑ (
𝑆 − 𝑘𝑣

𝑠
) (

𝑆
𝑠

)⁄

𝐺

𝑣=1

= 𝐺 − ∑
(𝑆 − 𝑘𝑣)! (𝑆 − 𝑠)!

(𝑆 − 𝑘𝑣 − 𝑠)! 𝑆!

𝐺

𝑣=1

. 

By the consideration of (
𝜕2𝑓

𝜕𝑦2)
𝑦=1

, we could use a similar formula for the mean deviation of the 

number of colors (genus number) g from the mean value 𝑔̅𝑠. 

 

 3. Discussion and approximation formulas. In order to solve our problem, we must know 

how the S species present in the basal are are distributed among the genera represented by G. In 

particular, we must know the number of genera represented in the basal area by one species only; 

this number is denoted by H1. Similarly, let H2 be the number of genera, those in the basal area 

by two, H3 the number of those that are represented by three species, and so on. So we need all 

these frequencies 

𝐻1, 𝐻2, 𝐻3, 𝐻4, … 

which indicate the distribution of the species according to the number of species native to them 

in the  area. They form a table that we could call a "ranked genus table". Such tables were dealt 

with by J. C. WILLIS; he also examined the genus sizes within families, the sizes of endemic 

genera, etc.4 At the end of this work, the reader will find the genus table of Swiss flora used by 

MAILLEFER (Table I); it is of a structure similar [p. 216] to the genus tables considered by 

WILLIS; H1, the number of monotypic genera within Switzerland is the largest, and generally Hk 

decreases as k grows, initially fairly smoothly and regularly. 

 From the definition of the frequencies Hk, it follows without further ado that the sums 

extend over all existing values of k as 

(7) 

∑ 𝐻𝑘

𝑘

= 𝐺, 

 

 
4 J.C. WILLIS, Age and Area, Cambridge 1922. For a mathematical treatment, see in particular G. UDNY YULE, A 

mathematical theory of evolution, based on the conclusions of Dr. J.C. WILLIS, Phil. Transactions R. S. London, Ser. 

B. Vol. 213 (1924). 
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(8) 

∑ 𝑘𝐻𝑘

𝑘

= 𝑆. 

Formula (6) can be rewritten after the introduction of Hk as 

(9) 

𝑔𝑠 = 𝐺 − ∑ 𝐻𝑘

(𝑆 − 𝑘)! (𝑆 − 𝑠)!

(𝑆 − 𝑘 − 𝑠)! 𝑆!
𝑘

. 

[sic; printed in the original article as 𝑔𝑠, but what is meant here is 𝑔̅𝑠] 

 By slightly transforming the above, one obtains the following expression for the expected 

generic coefficient: 

(10) 

100𝑔̅𝑠

𝑠
= 100 ∑ 𝐻𝑘

1

𝑠
[1 − (1 −

𝑠

𝑆
) (1 −

𝑠

𝑆 − 1
) … (1 −

𝑠

𝑆 − 𝑘 + 1
)]

𝑘

. 

 By reason of this expression, one can show that the average generic coefficient, 100𝑔̅𝑠 𝑠⁄ , 

decreases steadily, from 100 to 100𝐺 𝑆⁄ , as s, the number of species in the subarea, increases 

from 1 to S. 

 

 The proof is based on the following general remark: If the polynomial f (x) has all positive roots, of which a 

is the smallest, and f (0)> 0 then the second derivative f "(x) is left to a does not vanish, positive in the interval 0 < x 

< a, so that the curve y = f (x) seen from below is convex, and therefore ( f (x)- f (0))/x, as the directional coefficient 

of a chord, increases steadily when x from 0 to a. The application to the polynomial whose roots are S - k + 1, ..., S - 

1, S, and which assumes the value 1 for x = 0, yields that the general term of the sum on the right in (10) decreases 

steadily as s increases steadily from 0 to S - k + 1. From here to S, however, when s grows in an integer, the term 

coincides with the decreasing function s-1. 

 

 The numerical evaluation of formula (10) is quite laborious. One obtains an 

approximation formula useful for small values of s by roughly replacing the product 

[p. 217] 

(1 −
𝑠

𝑆
) (1 −

𝑠

𝑆 − 1
) … (1 −

𝑠

𝑆 − 𝑘 + 1
) 

appearing in the main term of the sum in (10) by the kth power 

(1 −
𝑠

𝑆
)

𝑘

 

and this by its first four terms 

1 −
𝑘

𝑆
𝑠 +

𝑘(𝑘 − 1)

2𝑆2
𝑠2 −

𝑘(𝑘 − 1)(𝑘 − 2)

6𝑆3
𝑠3 

The result is the approximate formula 

(11) 

100𝑔̅𝑠

𝑠
≈ 100 ∑ 𝐻𝑘 [

𝑘

𝑆
−

𝑘(𝑘 − 1)

2𝑆2
𝑠 +

𝑘(𝑘 − 1)(𝑘 − 2)

6𝑆3
𝑠2]

𝑘

 

≈ 100 − 𝑏𝑠 + 𝑐𝑠2. 
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We use (8) and set 

(12) 

𝑏 =
100

2𝑆2
∑ 𝐻𝑘𝑘(𝑘 − 1)

𝑘

, 𝑐 =
100

6𝑆3
∑ 𝐻𝑘𝑘(𝑘 − 1)(𝑘 − 2)

𝑘

. 

Obviously, the approximate formula (11) is useful at most until s remains below the abscissa of 

the minimum, that is, as long as 

(13) 

𝑠 <
𝑏

2𝑐
. 

 A similar but somewhat more accurate approximation formula is obtained by applying 

STIRLING's formula to the terms found in (9) and then developing it by decreasing powers from S 

to S-3 inclusive. A longer calculation, which I suppress here, yields 

(14) 

100𝑔̅𝑠

𝑠
≈ 100 (1 −

1

6𝑆2
) − [𝑏 (1 −

1

𝑆
) + 3𝑐] (𝑠 − 1) + 𝑐(𝑠2 − 1). 

This approximation formula is also useful at most to its minimum. 

 

4. Numerical example. Formula (10) allows us to compute the expected generic coefficient 
100𝑔̅𝑠

𝑠
, 

starting from any known  area, for a subarea of any given species number s. The exact formula 

[p. 218] (10), if s is sufficiently small, is to be replaced by the much more convenient 

approximation formula (14). 

 I have carried out the calculation, for Switzerland as a basal area, with the data used by 

MAILLEFER, which are summarized in Table I. The rather tedious exact formula (10) was used 

only for the species number s = 200.5 By inserting the data from Table I into (12), one can easily 

obtain the numerical values for b and c (which are the "factorial moments" familiar to the 

statistician) and by substituting the values of b, c and S in (14) gives the approximate formula 

(15) 

100𝑔̅𝑠

𝑠
≈ 100.27 − 0.2674𝑠 + 0.001329𝑠2. 

The minimum of the right side is s = 100.5; the formula (15) actually remains useful for 

approximately s <90. In Table II, which follows at the end of this work, I present the values that I 

based on formulas (10) and (15), in the third column headed "theoretical" opposite those 

obtained by MAILLEFER through urn experiments, and those in the second column headed 

"observed". The agreement is completely satisfactory. Since then, MAILLEFER has successfully 

compared his figures with an extensive plant geographic data, the communication of the 

preceding calculations seemed to me of some interest, both for the probability calculation and for 

the study of plant distributions, in which study the importance of statistical recordings and 

numerical relationships have just been pointed out in the basic work of P. JACCARD. 

 
5 The calculation was carried out by Mr. E. MOECKLIN, Assistant. 
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 Finally, I would like to thank my dear colleague, Professor P. JACCARD, for his pointed 

reference to the discussion just dealt with. 

[p. 219] 

 

Table I. 

Summary table of Swiss flora according to MAILLEFER
6 

Hk = number of genera represented by k species. 

 

k Hk k Hk k Hk k Hk 

1 331 11 8 21 1 31 1 
2 133 12 3 22 2   
3 56 13 6 23 3 34 1 
4 36 14 4 24 1   
5 27 15 1 25 0 74 1 
6 20 16 2 26 1   
7 15 17 4 27 0 85 1 
8 8 18 2 28 1   
9 7 19 4 29 2   

10 7 20 5 30 1   

 

  

Table II.  

Probable generic coefficients, determined through urn experiments and calculation. 

s = number of species in the subarea. 

 

s Observed Theoretical 

5 99.7 98.9 

10 97.9 97.7 

20 95.3 95.5 

30 93.4 93.5 

40 91.8 91.7 

50 89.6 90.2 

60 88.4 89.2 

80 87.1 87.6 

200 72.1 71.7 

 

 

 
6 Op. cit., p. 118. Note the remarks on p. 117. 



 

  



 

 


